SMILe: Shuffled Multiple-Instance Learning
نویسندگان
چکیده
Resampling techniques such as bagging are often used in supervised learning to produce more accurate classifiers. In this work, we show that multiple-instance learning admits a different form of resampling, which we call “shuffling.” In shuffling, we resample instances in such a way that the resulting bags are likely to be correctly labeled. We show that resampling results in both a reduction of bag label noise and a propagation of additional informative constraints to a multiple-instance classifier. We empirically evaluate shuffling in the context of multiple-instance classification and multiple-instance active learning and show that the approach leads to significant improvements in accuracy.
منابع مشابه
Different Learning Levels in Multiple-choice and Essay Tests: Immediate and Delayed Retention
This study investigated the effects of different learning levels, including Remember an Instance (RI), Remember a Generality (RG), and Use a Generality (UG) in multiple-choice and essay tests on immediate and delayed retention. Three-hundred pre-intermediate students participated in the study. Reading passages with multiple-choice and essay questions in different levels of learning were giv...
متن کاملLazy Learning by Scanning Memory Image Lattice
SMILE (Scanning Memory Image LatticE) is a lazy learning framework based on a memory image lattice scanning technique. To classify an unseen instance, the instances in the training set will generate a memory image lattice in terms of the similarities between the training instances and the unseen instance. An exploration algorithm of memory image lattice is designed to search an appropriate set ...
متن کاملDiscriminatively Trained Latent Ordinal Model for Video Classification
We study the problem of video classification for facial analysis and human action recognition. We propose a novel weakly supervised learning method that models the video as a sequence of automatically mined, discriminative sub-events (eg. onset and offset phase for "smile", running and jumping for "highjump"). The proposed model is inspired by the recent works on Multiple Instance Learning and ...
متن کاملEvery Smile is Unique: Landmark-Guided Diverse Smile Generation
Each smile is unique: one person surely smiles in different ways (e.g. closing/opening the eyes or mouth). Given one input image of a neutral face, can we generate multiple smile videos with distinctive characteristics? To tackle this one-to-many video generation problem, we propose a novel deep learning architecture named Conditional MultiMode Network (CMM-Net). To better encode the dynamics o...
متن کاملA new descriptor of gradients Self-Similarity for smile detection in unconstrained scenarios
Smile detection is a sub-problem of facial expression recognition field, which has attracted more and more interests from researchers because of its wide application market. As for smile detection problem itself, the ‘wild’ unconstrained scenario is more challenging than the laboratory constrained scenario. Therefore, in this paper, we mainly focus on solving smile detection problem in unconstr...
متن کامل